
Detect and Prevent
Security Vulnerabilities
in your Hardware Root of Trust

cycuity.com

cycuity.comAll rights reserved.

Introduction
Computer hardware is omnipresent, with more than one trillion semiconductor devices sold in 20181. Such large
growth in the number of semiconductor devices is driven by many factors, including the rapidly expanding sector
of the Internet of Things (IoT), which has resulted in the proliferation of simple microcontrollers in all kinds of
devices, and the ongoing development of customized processors for new applications. For instance, highly
customized Application Specific Integrated Circuits (ASICs) are used to accelerate various applications, including
virtual reality, computer vision, robotics, speech recognition, and autonomous vehicles. Many of these
applications previously ran purely in software on a general-purpose processor but are now being migrated to
custom chipsets or Field Programmable Gate Array (FPGA) based systems.

These highly specialized ASIC and FPGA systems control many critical aspects of our daily lives. We trust our
computer systems for a variety of different activities, including secure storage and transmission of financial data,
identifiable personal information, and biometric data such as facial recognition characteristics and fingerprints.
We rely on these datasets to support crucial infrastructure, autonomous vehicle function, and home security.
Traditionally, data security was a software-based issue, but the advent of custom hardware applications has led
to an increase in hardware-based attacks. As a result, hardware security is becoming more important every day.
In order to secure an entire system, it is no longer sufficient to look at software alone – each layer of the
computing stack must be analyzed as a system, with hardware being the basis of that system. Therefore, security
may be conceptualized as a trust handoff.

Hardware is at the root of the trust chain. Software runs on chipsets in every system meaning that if the hardware
itself is not secure the most advanced software-level defenses can still be circumvented.

However, it is important to emphasize that analyzing hardware in isolation also does not guarantee system-level
security. Composing different parts of a system together can result in vulnerabilities due to incorrect
assumptions made about the larger system when analyzing the security of the individual components. If there
are any broken security links in the chain between hardware, boot code, firmware, operating system, and to other
layers, then there may be system-wide security vulnerabilities. These system security concerns multiply as hard-
ware is becoming more diverse, complex, and customized to provide the highest performance and flexibility for
their end applications.

Figure 1: Chain of Trust Connecting System Components from Hardware

Hardware BootROM Firmware Kernels/VMs Applications

cycuity.comAll rights reserved.

Many security attacks over the last several years have been system-level exploits rooted
in hardware security deficiencies, highlighting the importance of examining security

across both the hardware and software stack.

System-level Exploits Driven by
Hardware Security Vulnerabilities
Hardware has contributed to many recent system-level exploits in numerous market verticals, including
datacenters, aerospace and defense, and IoT. Securing underlying hardware from the
beginning is a critical step in order to reduce the cost of an exploit.

Pre-development

In a cloud environment, datacenters provide access to compute-centered processors, custom accelerators,
and Field Programmable Gate Arrays (FPGAs), enabling cutting edge applications to be deployed without the
overhead of investment in a custom compute infrastructure. Datacenter hardware is shared between many
different customers, leading to concerns about isolation between applications.

Traditionally, the operating system provided acceptable guarantees about process isolation, but recent
attacks such as Spectre and Meltdown2 demonstrate that a bug-free OS and bug-free software can still
be completely compromised by an attacker running unprivileged software on the same machine. These
attacks, and many others including Foreshadow3 and Spoiler4 exploit the fact that speculative execution,
necessary to push performance boundaries, leaves traces of sensitive data in the hardware which can be
extracted using cache timing side-channels.

While Meltdown and Spectre are advanced hardware-based attack mechanisms, datacenter hardware
is often plagued with more basic vulnerabilities. One such example is an attack capable of completely
replacing firmware on a server baseboard management controller (BMC) with malware5. The BMC
enables a server administrator to perform tasks previously requiring physical access to the server, such
as updating the operating system and power-cycling the system. If compromised, the entire machine
is vulnerable, as much of this infrastructure hardware sits below the visibility of the operating system
or hypervisor, where most security protections are built. The attack is possible because the hardware
configuration of the communication bus connecting the BMC to the host machine does not authenticate
transactions originating from the host machine. The result is that the private physical memory space
of the BMC can be manipulated directly through this interface allowing software on the host machine
to replace existing BMC firmware with malware, which allows a rogue attacker to take over the server
and compromise any confidential or proprietary data that might be stored there.

cycuity.comAll rights reserved.

Datacenter customers often choose to protect specific portions of their application in a secure enclave.
Secure enclaves are execution environments with strong hardware-enforced security guarantees, such
as isolation and protection from all other processes, including the operating system. An example is SGX
provided by Intel6. However, the presence of hardware security features does not guarantee security if those
features are not thoroughly vetted. The Foreshadow attack demonstrated successful recover of secrets
processed within SGX enclaves, including cryptographic material whose secrecy is critical to providing remote
attestation capabilities for thousands of SGX applications7. Detection of hardware vulnerabilities in secure
enclaves can prevent against such types of attacks in the future.

Aerospace and Defense

The security and trustworthiness of microelectronics that are used in military and aerospace applications
are of utmost importance. Any successful attacks on these systems can have disastrous effects including
loss of intellectual property and compromises to national security. Ensuring that these systems are
designed and deployed with protections against security exploits is challenging due to the rapid evolution
of threats and the growing use of microelectronics in all sectors of aerospace and defense.

Further exacerbating this problem is the diversity of the supply chain from design to tape-out, with multiple
different parties with varying levels of trust responsible for each stage. To combat these issues, multiple
different Department of Defense (DoD) initiatives striving to develop a portfolio of microelectronics protections
and design requirements have been put in place.

For example, The DoD Microelectronics Innovation for National Security and Economic Competitiveness (MIN-
SEC) initiative has allocated $2 billion to advance microelectronics assurance8. DARPA’s Electronics Resurgence
Initiative (ERI), as part of the MINSEC initiative, has allocated $1.5 billion dollars to advance microelectronics
trust and security. New technologies to detect and prevent security vulnerabilities in aerospace and defense
systems are critically necessary.

cycuity.comAll rights reserved.

Attackers have capitalized on the proliferation of insecure IoT products by infecting large numbers of IoT
devices, which can be controlled to launch large scale coordinated Distributed Denial-of-Service (DDoS)
attacks. The Mirai botnet was able to infect and control approximately 600,000 devices spread across
the world and successfully DDoS a number of high-profile targets, including DNS providers and telecoms9.

Although the basic form of Mirai relies on the use of a small set of default passwords, more advanced
variants exploit bugs in remote firmware update mechanisms10, illustrating the importance of firmware
authentication that needs to be built and protected into the hardware itself.

The security of chips dedicated to sending and receiving information through wireless communication
protocols, such as Bluetooth Low Energy (BLE), is extremely important as BLE is commonly used in medical
devices and network access points. In a recent vulnerability, BleedingBit, malicious advertising packets
overflow the firmware stack provided by the hardware vendor, allowing an attacker to gain control of
the chip11.

IoT

These advertising packets can be transmitted by anyone with physical proximity to the chip,
making the vulnerability extremely severe. Detecting and preventing these vulnerabilities in

hardware reduces the cost of fixing these vulnerabilities throughout the supply chain.

cycuity.comAll rights reserved.

With the proliferation of hardware and firmware-based attacks, providing trust and security services at
the hardware-level is paramount. One popular way to provide on-chip security is to utilize a Hardware
Root of Trust (HRoT). A Hardware Root of Trust is a minimum set of hardware and software dedicated to
providing security from the moment the system is powered on.

Typically, the Hardware Root of Trust is embedded in a larger system which contains a processor designated to
run a rich operating system and wide variety of applications. Security-critical functionality is offloaded to the
Hardware Root of Trust, whose software and hardware is less complex than the main application, providing a
smaller and more impenetrable attack surface.

Companies are either building their own Hardware Root of Trust or licensing HRoT intellectual property
(IP) from a third party as part of their development. Unlike purely software-based security strategies, a
Hardware Root of Trust builds core security mechanisms into the actual hardware. Depending on the end
application, there are a variety of security services HRoTs typically perform. These include secure boot, secure
debug, secure storage, key generation and management, secure firmware and software update,

Trusted Execution Environments (TEEs), secure communication, runtime monitoring to detect and report
violations of specific security policies during system operation, and mechanisms to detect and react to
physical tampering and fault attacks.

Hardware Roots of Trust

To provide these services, HRoTs include the following hardware blocks: cryptographic
accelerators, one-time programmable memory, secure persistent storage,

secure memory, and a microcontroller unit (MCU) for executing trusted software.
 Figure 2 provides a high-level block diagram for a typical HRoT.

cycuity.comAll rights reserved.

Hardware Roots of Trust Continued...

The MCU is the “brain” of the HRoT and executes the trusted computing base (TCB), which is a small
well-verified trusted software program running at the highest privilege level. This software is responsible
for coordinating usage of different security features to provide a specific security service.

For example, secure boot is the procedure which brings the system out of reset and transfers control to a trusted
firmware image. Secure boot requires accessing secure memory regions, retrieving cryptographic keys
from secure persistent storage, and using various cryptographic accelerators to authenticate a firmware
image. While all of this could theoretically be done without trusted software executing on a microcontroller,
the ability to offload some functionality to software greatly simplifies the development of the
HRoT, provides configurability necessary to tailor an HRoT design to many target applications, and
increases flexibility. However, the opportunity for customization makes security verification of all possible
system configurations infeasible making it important to verify the complete HRoT system, which
includes both hardware and software components, for each target application.

The MCU trusted computing base can also provide the ability to construct trusted execution environments
called containers or enclaves, which have stronger isolation guarantees than regular process
execution. An application requiring a rich set of OS features and software libraries might execute on the
Application central processing unit (CPU) most of the time but use the HRoT to construct an enclave for
decrypting and processing sensitive data.

Figure 2: Hardware Root of Trust Block Diagram

cycuity.comAll rights reserved.

A large majority of hardware blocks are completely contained within the Hardware Root of Trust boundary.
However, a mechanism must exist for the HRoT to communicate with the rest of the system so software
running on the application CPU can create secure enclaves and access the cryptographic accelerators.
In Figure 3, the HRoT is connected to the rest of the platform through an on-chip system bus (such
as an AXI interconnect).

Any interfaces connecting the HRoT to surrounding logic must be fully verified to ensure that HRoT functionality
cannot be corrupted by malicious input from the external system, and that sensitive information such as
device-specific encryption keys and other important assets never leak beyond the Hardware Root of Trust
boundary, often called the security perimeter. Additionally, if the HRoT IP is highly configurable during the
hardware design and integration phase, it is crucial to detect and prevent vulnerabilities on the specific
configuration instantiated in the platform.

This requires security analysis to be performed at system level to ensure that the integration of the HRoT hasn’t
introduced any security vulnerabilities.

Figure 3: Hardware Root of Trust Integration within a Larger System

cycuity.comAll rights reserved.

The Benefits of a Secure HRoT
Implementation
Despite the fact that Hardware Root of Trust designs use the minimal amount of hardware and software
necessary to accomplish security objectives, the complexities and intricacies in understanding whether
they are introducing vulnerabilities can make one question the trust being put in them. In order for
products to ship with differentiated and high value security offerings, ensuring your intellectual property
and your customers’ information is securely protected is essential for maintaining brand leadership and
driving revenue growth. Following a concept successfully executed by Microsoft in the software domain,
a Security Development Lifecycle (SDL)12 applied to hardware provides best in class security that detects
and prevents vulnerabilities while providing a robust security offering. An SDL starts with the specification
of a security Threat Model and then a method for detecting violations to that Threat Model. A
primary component of a hardware SDL is understanding the difference between a security feature and a
secure feature.

A HRoT is an excellent security feature to improve overall system security, but it is important to demonstrate
that the HRoT is a secure feature. For example, if the system relies on the HRoT to perform a
secure boot procedure, but an attacker is able to bypass the secure boot process entirely, extract or
modify assets used to authenticate firmware, or force certain stages to be skipped such as secure erasure
of key material used in the boot process, the attacker will be able to run their own malicious code with the
highest privilege level after the system is powered on and circumvent the core security features.
Securing the debug and test infrastructure for the HRoT and larger system is essential. Debug and test
capabilities are crucial to successful deployment of the system but are often at odds with security due
to the increased visibility and access provided.

Solutions for securing the debug and test interface range from completely disabling the feature before deploy-
ment to providing the ability to expose varying degrees of debug and test functionality based on authentication
and access control policies. These strategies must be implemented correctly. Errors in debug mode configuration
can lead to severe vulnerabilities in the system, especially for applications in the IoT and automotive space where
an attacker likely can gain physical access to the system.

Beyond secure boot and debug, other features provided by the HRoT such as memory protections and
access control policies for System-on-Chip (SoC) peripherals are highly configurable either in software
or in the hardware IP itself. Mistakes in configuration and usage of HRoT features have the potential to
introduce vulnerabilities and often cannot be detected and prevented until the entire system is completely
analyzed.

Leakage of information such as cryptographic key material, either directly or indirectly through
timing-based or power-based side channels, is a weakness an attacker will exploit to gain

unauthorized access to the system. Any form of indirect leakage represents a potential concern
andmust be identified and addressed as the whole system relies on the HRoT for security.

cycuity.comAll rights reserved.

Existing HRoT Security
Verification Techniques
Security verification is difficult because of the fundamental asymmetry between attackers and defenders.
An attacker only has to discover and exploit a single vulnerability to achieve their goals whereas the
system design and verification teams must anticipate and defend against the complete set of possible
threats.

Many security vulnerabilities hide within modes of the design not exercised by typical system usage
and go undetected during traditional functional verification. Successful security verification requires
a shift in thinking. Instead of focusing solely on “does the design function properly,” the verification strategy
needs to be centered around the questions: “what information in my design needs to be protected?”
and “where does that information flow and how is that information accessed?”

Current methodologies being deployed to address security are simulation-based verification, manual
design review, formal verification methods, and penetration testing. Applying one or all of these methods
is still insufficient to address hardware security. Moreover, these existing approaches are time consuming,
hard to measure, and are often a burden to engineering schedules.

These approaches are at odds with the existing verification and development process where engineering teams
are focused on meeting schedules while product security teams are focused on building out unique and
differentiated security products. This hurdle needs to be overcome to get a secure product to market without
introducing added costs or delaying products schedules.

Manual Review
Manual review of the design architecture and code review to enumerate and prioritize threats to the
system and identify potential vulnerabilities in the implementation is an important process for security
verification, but requires engineers with both hardware design, verification, and security expertise.

Manual design review is not scalable, nor is it complete, and must be supplemented by other tool-aided
verification methods such as simulation-based functional testing or formal analysis in order for it to
yield any meaningful results on modern designs.

cycuity.comAll rights reserved.

Penetration Testing

Penetration testing is another popular strategy for system security analysis. Often, engineers on the
“red team” adopt the role of a potential attacker and perform penetration testing on the product in
order to highlight areas of the system susceptible to real-world attacks and engineers on the “blue
team” harden the design against possible red team attacks. Penetration testing is typically done
post-silicon to better mimic the conditions under which an attacker will attempt to infiltrate the system,
meaning that any vulnerabilities discovered will have to be mitigated with software or firmware
to avoid a costly silicon re-spin. As with pre-silicon manual design review, penetration testing is an
important component in hardware security verification. However, it requires engineers with specialized
knowledge rarely available within most organizations.

Simulation-based Function Verification

Simulation-based functional verification is the work-horse of the semiconductor industry and every
single digital chip designed today has undergone a significant amount of simulation-based verification
before tape-out. Functional verification components include a set of tests which exercise specific design
scenarios and checkers. These verify values in the design adhere to specific rules or match expected values from
a golden model of the system. With respect to security, the main weakness of simulation-based verification is
that security vulnerabilities are unknowns often unrelated to core design functionality. Due to modern design
complexity, it is impossible to exhaustively test the entire design during simulation, therefore some security vul-
nerabilities are bound to go undiscovered.

Moreover, tracking where information flows in the design is at the core of the three major security objectives of
confidentiality, integrity, and availability. Currently, no existing tools used in simulation-based functional
verification can track information flows in the design. Labor-intensive negative tests must be developed to check
security-specific corner cases for the highest priority threats, but without the ability to track information flow in
the design, negative testing is extremely limited.

For example, verifying that a cryptographic key does not leak to an interconnect on the surface appears to be
straightforward but in reality, is extremely difficult. It is possible to record the value of the key as it enters the
encryption module then check if that exact same value appears on the system interconnect, but the key can go
through an infinite number of simple transformations (ex. exclusive-or with plaintext, bit shift, etc.) from which an
attacker can easily recover the original key value. These simple transformations are difficult to identify as
“dangerous” using current tools, and more complex indirect leakages through timing side-channels are
impossible to detect.

cycuity.comAll rights reserved.

Formal Verification

To overcome the limitation of incomplete design coverage, formal verification is seen as an alternative
to simulation-based testing for security verification. Formal verification techniques reason
about properties on an abstract model of the system for all possible inputs rather than running a large
number of tests. As such, if a security vulnerability violates a property verified using formal analysis,
it is guaranteed to be discovered.

The limitation with formal verification is the size of the design that can be analyzed, and the set of simplifying
assumptions which must be made to make verification of larger designs tractable. Formal verification may be
appropriate as part of a larger strategy, but it does not solve the larger security problem crossing hardware and
software. As design size (both hardware and software) increases, it becomes difficult to provide the same level
of security guarantees, requiring significant manual effort to correctly model the design at an abstract enough
level to draw meaningful conclusions without too many assumptions.

To combat the drawbacks related to these traditional security verification techniques, Cycuity
provides security verification products that detect and prevent hardware security vulnerabilities within
the existing chip verification strategies. In particular, Cycuity’s Radix-STM product is software
that is used in conjunction with industry-standard functional simulation tools, enabling security verification
while functional verification is being performed.

Radix is low-effort to deploy while simultaneously providing a significant increase in confidence in the
security of the design at the system level. Radix integrates seamlessly with existing simulation-based
functional verification environments and can increase security coverage re-using existing functional tests,
eliminating the need to create security-specific test vectors. This is possible due to our patented technology
capable of detecting unexpected and unidentifiable information flows in the system during functional
simulation.

cycuity.comAll rights reserved.

System Security with Cycuity
Logic’s Radix-S Software
Radix-S is a software package that identifies security vulnerabilities in your HRoT design, implementation,
and the surrounding system. Whether you develop your own HRoT, or integrate existing HRoT IP into a larger
system, Radix scans both system hardware and software during the pre-silicon design and verification
simulation stages to identify system-level security vulnerabilities. Identifying security vulnerabilities at the early
stages of the design cycle with Radix allows designers to prevent vulnerabilities before deployment.

Capabilities
Radix-S ships with Hardware Root of Trust Threat Models common to applications in all market verticals
that span both hardware and software, along with a framework for detecting violations to the
Threat Models. Radix takes as input the hardware design files typically written in a Register-Transfer
Logic (RTL) language and the software executing on the system to identify any violations of the security
rules. Radix does so by leveraging the customer’s existing functional verification environments, so
deployment does not require additional resources or modifications to existing engineering infrastructure.
Examples of threats covered by the security threat models and rules include:

Unprivileged access to your customer’s proprietary or confidential data

Unauthorized access to keys used to sign and authenticate your boot images

Side channel leakages of critical customer information

System-level compromises arising from HRoT misconfigurations

Directly out of the box, Radix can analyze your HRoT design and the surrounding system to protect against these
security threats.

Figure 4: The Workflow of Radix

>

>

>

>

HroT

cycuity.comAll rights reserved.

Creating a Security Monitor

Once the design RTL is available and the security rules are created, Radix analyzes the system design
and the security threats that are being protected against to create a Security Monitor (SM). The SM is a monitor
that continuously checks the original design and the software running on top of it for the threats that were
chosen in the previous step. The SM is synthesizable hardware, allowing it to be added to simulation-based
functional verification runs to check for security violations at the same time that functional tests are running.
This is shown in Figure 4.

The Security Monitor integrates into standard functional verification environments without

disruption to existing workflows. The scope of the security monitor is not required to be

identical to the scope of the design RTL simulated in the existing verification environment.

Both the threat models and SM can be developed once then re-used during different stages in

the design schedule.

For example, if key leakage to the boundary of the HRoT is the focus of the security analysis, the Security
Monitor generated for the HRoT can be simulated alongside the RTL for the entire SoC in order
to detect key leakage occurring while actual platform software is running. Alternatively, if a suite of
regression tests targeting the HRoT are available earlier, the same Security Monitor can be run in the
verification environment for the HRoT.

Existing functional verification environments already include both design RTL and software to be run
on the platform, meaning Radix can perform system-level security analysis of both the hardware and
software without requiring the development of custom test infrastructure.

cycuity.comAll rights reserved.

Radix Features for Efficient
Security Analysis
After analyzing the security threat model on the system design, Radix provides detailed security
reports regarding the system’s susceptibility against the threats defined in the model. Radix identifies
how many threats the chip design is susceptible to and reports analytics in order to understand the likelihood
of exploit.

Radix contains an interactive platform to aid in visualization of information flow throughout the design, as seen in
Figure 5. This platform includes a waveform viewer which annotates the simulation trace with data about information
flows under specific threat models. If any security rules fail during simulation, Radix also provides a visualization of a
concrete path through the design hierarchy showing information flow causing security rule violation. These analysis
features make exploring information flow in the design more efficient and are unique to Radix.

Figure 5: Radix Interactive Analysis Platform

cycuity.comAll rights reserved.

Conclusion
Hardware is becoming more complex, customized, and ubiquitous. This is driving security features into hardware
and creating more attack vectors that exploit hardware vulnerabilities. The existence and exploitation of these
hardware vulnerabilities can increase time-to-market, reduce chip vendor trust, and lead to costly lawsuits and
chip recalls. A popular new method for ensuring the security of a computing system is to employ a Hardware
Root of Trust (HRoT), which is the foundation of security for the system. However, without security verification of
the HRoT and the entire system around it, security violations may still exist.

Cycuity’s Radix software checks your entire system, including the HRoT, the rest of the hardware, and the soft-
ware for system-level security vulnerabilities. Radix does this by leveraging your existing functional
verification environment, without causing any disruption in your workflow and without needing to write new tests
specifically for security.

With Radix, security vulnerabilities can be identified and prevented before tape-out or deployment. This provides
system designers with a reliable and efficient way to increase the security of their systems, resulting in many
benefits including sales enablement, protection iiifrom exploits, and brand trust.

About Cycuity
Cycuity is a cybersecurity company that provides industry-leading solutions to address security
vulnerabilities overlooked in today’s systems. Cycuity’s innovative hardware security verification
platform, Radix, enables design teams to identify and prevent system-wide exploits arising around a
Hardware Root of Trust that are otherwise undetectable using current methods of security review.

[1] https://www.semiconductors.org/more-than-1-trillion-semiconductors-sold-annually-for-the-first-time-ever-in-2018/
[2] https://meltdownattack.com/
[3] https://foreshadowattack.eu/
[4] https://arxiv.org/abs/1903.00446/
[5] https://www.theregister.co.uk/2019/01/24/bmc_pantsdown_bug/
[6] https://software.intel.com/en-us/sgx/
[7] Van Bulck, Jo, et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.” USENIX Security Symposium.
2018.
[8] http://www.nationaldefensemagazine.org/articles/2018/6/14/official-pentagon-investing-billions-into-microelectronics
[9] Antonakakis, Manos, et al. “Understanding the Mirai Botnet.” USENIX Security Symposium. 2017.
[10] https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
[11] https://go.armis.com/bleedingbit/

[12] https://www.microsoft.com/en-us/securityengineering/sdl/

cycuity.com
All rights reserved.

